Dynamic Portfolio Execution and Information Relaxations
نویسندگان
چکیده
We consider a portfolio execution problem where a possibly risk-averse agent needs to trade a fixed number of shares in multiple stocks over a short time horizon. Our price dynamics can capture linear but stochastic temporary and permanent price impacts as well as stochastic volatility. In general it is not possible to solve even numerically for the optimal policy in this model, however, and so we must instead search for good suboptimal policies. Our principal policy is a variant of an open-loop feedback control (OLFC) policy, and we show how the corresponding OLFC value function may be used to construct good primal and dual bounds on the optimal value function. The dual bound is constructed using the recently developed duality methods based on information relaxations. One of the contributions of this paper is the identification of sufficient conditions to guarantee convexity, and hence tractability, of the associated dual problem instances. That said, we do not claim that the only plausible models are those where all dual problem instances are convex. We also show that it is straightforward to include a nonlinear temporary price impact as well as return predictability in our model. We demonstrate numerically that good dual bounds can be computed quickly even when nested Monte Carlo simulations are required to estimate the so-called dual penalties. These results suggest that the dual methodology can be applied in many models where closed-form expressions for the dual penalties cannot be computed.
منابع مشابه
Continuous time portfolio optimization
This paper presents dynamic portfolio model based on the Merton's optimal investment-consumption model, which combines dynamic synthetic put option using risk-free and risky assets. This paper is extended version of methodological paper published by Yuan Yao (2012). Because of the long history of the development of foreign financial market, with a variety of financial derivatives, the study on ...
متن کاملMULTIPERIOD CREDIBILITIC MEAN SEMI-ABSOLUTE DEVIATION PORTFOLIO SELECTION
In this paper, we discuss a multiperiod portfolio selection problem with fuzzy returns. We present a new credibilitic multiperiod mean semi- absolute deviation portfolio selection with some real factors including transaction costs, borrowing constraints, entropy constraints, threshold constraints and risk control. In the proposed model, we quantify the investment return and risk associated with...
متن کاملSupply Portfolio Selection and Execution with Demand Information Updates
This paper considers a problem of multi-period supply portfolio selection and execution with demand information updates. A supply portfolio specifies a buyer’s decision on selecting sourcing mix from among a group of suppliers. We develop a framework for optimal supply portfolio selection and execution. Further, we demonstrate that the optimal portfolio selection follows a base-stock policy and...
متن کاملDynamic Portfolio Execution
We analyze the optimal execution problem of a portfolio manager trading multiple assets. In addition to the liquidity and risk of each individual asset, we consider cross-asset interactions in these two dimensions, which substantially enriches the nature of the problem. Focusing on the market microstructure, we develop a tractable order book model to capture liquidity supply/demand dynamics in ...
متن کاملOutperformance Testing of a Dynamic Assets Portfolio Selection Supplemented with a Continuous Paths Levy Process
This study aims at getting a better performance for optimal stock portfolios by modeling stocks prices dynamics through a continuous paths Levy process. To this end, the share prices are simulated using a multi-dimensional geometric Brownian motion model. Then, we use the results to form the optimal portfolio by maximizing the Sharpe ratio and comparing the findings with the outputs of the conv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Financial Math.
دوره 5 شماره
صفحات -
تاریخ انتشار 2014